

Technical catalogue | January 2013
SACE Tmax. T Generation Low voltage moulded-case circuit-breakers up to 1600 A

ABB SACE
A division of ABB S.p.A.
L.V. Breakers

Via Baioni, 35
24123 Bergamo - Italy
Phone: +39 035395111
Fax: +39 035395 306-433
www.abb.com

Authorized
value
provider
ABB

MULTIPLE TRADING

A single family of moulded－case circuit－breakers up to 3200 A

Certifications and Shipping Registers

The moulded－case circuit－breakers and their accessories comply with IEC60947－2 international standards and conform to EC directive ＂Low Voltage Directives（LVD）N ${ }^{\circ} 73 / 23$ EEC＂and＂Electromagnetic Compatibilities Directives（EMC）N ${ }^{\circ}$ 89／336 EEC＂．

Certification of conformity with the product Standards is carried out in the ABB SACE tests laboratory（accredited by SINAL）in respect of the EN 45011 European Standard，by the Italian certification body ACAE（Association for Certification of Electrical Apparatus），member of the European LOVAG organisation（Low Voltage Agreement Group） and by the Swedish certification body SEMKO belonging to the inter－ national IECEE organisation．

The SACE Tmax XT series has a hologram on the front，obtained using special anti－forgery techniques，a guarantee of the quality and genuineness of the circuit－breaker as an ABB SACE product．

There is also an entire range of moulded－case circuit－breakers conforming to UL／CSA standards，with rated current values ranging from 1 to 3000A and breaking capacities，at 600V AC，that can reach 100kA．

All the equipment also conforms to the specifications for installations on board and to those of RINA，DNV，BV，ABS，GL，LRs，PRS，RMRS， NKK type－approvals．

Corporate Quality System

The ABB SACE Quality System conforms with the following Stand－ ards：
－ISO 9001 international Standard；
－EN ISO 9001 （equivalent）European Standards；
－UNI EN ISO 9001 （equivalent）Italian Standards；
－IRIS International Railway Industry Standard
The ABB SACE Quality System attained its first certification with the RINA certification body in 1990.

Tmax - Moulded - Case Circuit - Breakers (MCCB)

A single family of moulded-case circuit-breakers up to 3200 A

Tmax moulded-case circuit-breakers guarantee an extremely high performance level while being progressively smaller in size, simple to install and able to provide increasingly better safety guarantees for the operator.
In addition to being ideal for the secondary distribution of alternmate and direct current, they feature dedicated solutions for all application requirements.

Moulded-case circuit-breakers can be used in low voltage civil and industrial installations with 1 to 3200 A operating current. The Tmax family includes 9 circuit-breaker sizes in three- or four-pole versions:

- XT1, XT2, XT3 and XT4 up to 250A;
- T4, T5 and T6 up to 1000A;
- T7 and T8 up to 3200A.

Tmax circuit-breakers can be equipped with thermomagnetic, solely magnetic or electronic trip units; all of which are interchangeable.
Since assembly instructions are simple, trip units can quickly and easily be replaced; even in the field.

The ultimate short-circuit breaking capacity (Icu) at 415V ranges from 18kA to 200kA, or up to 100kA for 690 V .

The following ranges are available:

- Circuit-breakers for AC and DC power distribution;
- Circuit-breakers for zone selectivity;
- Circuit-breakers for motor protection;
- Circuit-breakers for up to 1150V AC and 1000V DC applications;
- Switch-disconnectors.

All Tmax circuit breakers can be enhanced with a vast range of standardized accessories. This convenience not only cuts down on inventory, but creates an extremely flexible and easily managed solution.

All this makes the circuit-breakers very easy to operate with considerable savings due to rationalized stock management.

Accessories

A single family of moulded-case circuit-breakers up to 3200 A

Construction characteristics

Circuit-breakers for power distribution

Thermomagnetic trip units

TMD

Main characteristics:

- available for XT1 and XT3 in the three-pole and four-pole versions;
- protections:
- against overload (L): adjustable protection threshold from 0.7...1xln, with inverse long-time trip curve;
- against instantaneous short-circuits (I): fixed 10xIn protection threshold, with instantaneous trip curve;
■ 100\% neutral protection in four-pole circuit-breakers. 50% neutral protection is only available for In $\geq 125 A$;
- the thermal protection setting is made by turning the relative cursor on the front of the release.

Example with XT3 250A

Rotary switch for thermal protection setting

TMD/TMA

Main characteristics:

- available for XT2 and XT4 in the three-pole and four-pole versions;
- protections:
- against overload (L): adjustable protection threshold from 0.7...1xin, with inverse long time trip curve;
- against instantaneous short-circuit (I):
- fixed protection threshold for $\operatorname{In} \leq 32 A$,
- adjustable threshold beteewn 8...10xIn for 40A,
- adjustable threshold beteewn 6...10xIn for 50A,
- adjustable threshold beteewn 5...10xIn for $\operatorname{In} \geq 63 A$;
- 100% neutral protection in four-pole circuit-breakers. 50% neutral protection is only available for In 2 125A;
- the thermal and magnetic protection settings are made by turning the relative cursors on the front of the release.

Example with XT4 250A

	13	$\frac{\text { max }}{\text { mam }}$		MIN एन	MMSX	$\frac{1920}{2020}$	$\frac{\text { gin }}{\text { ciz }}$	1(40)	
Rotary switch for magnetic protection setting									Rotary switch for thermal protection setting

Circuit-breakers for power distribution

Electronic trip units

Ekip I

Ekip LS/I

Circuit-breakers for power distribution

Electronic trip units

The Tmax T2, T4, T5, T6 and T7 circuit-breakers, for use in alternating current, can be equipped with overcurrent releases constructed using electronic technology. This allows protection functions to be obtained which guarantee high reliability, tripping precision and insensitivity to temperature and to the electromagnetic components in conformity with the standards on the matter.

The power supply needed for correct operation is supplied directly by the current sensors of the release, and tripping is always guaranteed, even under single-phase load conditions and in correspondence with the minimum setting.

Basic protection functions

1	(L) Protection against overload This protection function trips when there is an overload with inverse long-time delay trip according to the IEC 60947-2 Standard $\left(I^{2} t=k\right)$. The protection cannot be excluded.
5	(S) Protection against short-circuit with time delay This protection function trips when there is a short-circuit, with long inverse time-delay trip ($1^{2} \mathrm{t}=\mathrm{k}$ ON) or a constant trip time $\left(1^{2} t=k\right.$ OFF). The protection can be excluded.
\square	(I) Instantaneous protection against short-circuit This protection function trips instantaneously in case of a short-circuit. The protection can be excluded.
(5)	(G) Protection against earth fault The protection against earth fault trips when the vectorial sum of the currents passing through the current sensors exceeds the set threshold value, with long inverse time-delay trip ($1^{2} \mathrm{t}=\mathrm{k}$ ON) or a constant trip time ($1^{2} \mathrm{t}=\mathrm{k}$ OFF). The protection can be excluded.

Advanced protection functions

The PR332/P trip unit makes it possible to carry out highly developed protection against the most varied types of fault.

In fact, it adds the following advanced protection functions to the basic protection functions.
(L) Protection against overload (IEC 60255-3)

This protection trips in case of an overload with inverse long-time delay according to IEC 60255-3 Standard, for the coordination with fuses and MV protections. The protection can be excluded.
(U) Protection against unbalanced phase

The protection function against unbalanced phase U can be used in those cases where a particularly precise control is needed regarding missing and/or unbalance of the phase currents. The trip time is instantaneous. The protection can be excluded.
(OT) Protection against overtemperature
The protection against overtemperature trips instantaneously when the temperature inside the trip unit exceeds $85^{\circ} \mathrm{C}$, in order to prevent any temporary or continual malfunction of the microprocessor. The protection cannot be excluded.

(Rc) Protection against residual current ${ }^{(1)}$

This integrated protection is based on current measurements made by an external toroid and is alternative to protection against earth fault G. The protection can be excluded.

(ZS) Zone selectivity ${ }^{(2)}$

 of the protection closest to the fault in relation to the time foreseen by time selectivity. Zone selectivity can be applied to the protection functions S and G, with constant time-delay trip. The protection can be excluded.

(UV, OV, RV) Protections against voltage

The three protections trip with a constant time-delay in the case of undervoltage, overvoltage and residual voltage respectively. The latter allows to detect interruptions of the neutral (or of the earthing conductor in systems with earthed neutral) and faults which cause movement of the star centre in systems with isolated neutral (e.g. large earth faults) to be identified. Movement of the star centre is calculated by vectorially summing the phase voltages. The protections can be excluded.

(RP) Protection against reversal of power

The protection against reversal power causes tripping of the breaker, with constant time-delay trip, when the flow of power reverses sign and exceeds, as an absolute value, the set threshold. It is particularly suitable for protection of large machines such as generators. The protection can be excluded.

(UF, OF) Protections of frequency

The two protections detect the variation in network frequency above or below the adjustable thresholds, opening the circuitbreaker, with constant time-delay trip. The protection can be excluded.

Electronic trip units for power distribution

SACE PR221DS

	PR221DS	PR221DS	PR221GP
Protection functions	L S , I	1	L S -

SACE PR231/P

| | PR231/P | PR231/P | |
| :--- | :---: | :---: | :---: | :---: |
| Protection functions | L | S $/ \boldsymbol{I}$ | I |

SACE PR331/P

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | PR331/P | | |
| Protection functions | | L | S | G |

SACE PR332/P

[^0]
Circuit-breakers for power distribution

Electronic trip units

PR221DS

The PR221DS trip unit, available for T2, T4, T5 and T6, provides protection functions against overload L and shortcircuit S/I (version PR221DS-LS/I): with this version, by moving the dedicated dip-switch, you can choose whether to have inverse time-delay S or instantaneous I protection against short-circuit. Alternatively, the version with only the protection function against instantaneous short-circuit I is available (version PR221DS-I, also see page 2/40 and following)
There is a single adjustment for the phases and the neutral. However, for the neutral it can be decided whether to request the protection threshold of the functions at 50-100\% of that
of the phases for Tmax T2 $\ln =160 \mathrm{~A}(\mathrm{~T} 2 \ln <160 \mathrm{~A}$, $N=100 \%$, whereas for T4, T5 and T6 it is possible to select the protection threshold OFF, 50% or 100% directly from the front of the trip unit by means of the specific dip switch.
The trip coil is always supplied with the PR221DS trip unit for Tmax T2 and is housed in the right-hand slot of the circuitbreaker. Dedicated auxiliary contacts are available for T2 with electronic trip unit (see page 3/24).
For Tmax T4, T5 and T6, the opening solenoid is housed internally and therefore, by not using the right-hand slot of the circuit-breaker, all the auxiliary contacts available can be used.

PR221DS-LS/I

Protection S
Against short-circuit with delayed trip

Protection L
Against overload

Protection functions and parameterisations

Protection functions ${ }^{(1)}$		Trip threshold	Trip curves	Excludability	Relation $\mathrm{t}=\mathrm{f}(\mathrm{l})$
L	Against overload with long inverse time delay trip and trip characteristic according to an inverse time curve (${ }^{2} \mathrm{t}=\mathrm{k}$) according to IEC 60947-2 Standard	$1_{1}=0.40-1 \times \ln \quad \text { step }=0.04 \times \mathrm{In}$ Trip between 1.1...1.30 $\times \mathrm{I}_{1}$ (T4,T5,T6) Trip between 1.05...1.30 $\times \mathrm{I}_{1}$ (T2)	$\begin{aligned} & \text { at } 6 \times I_{1} \\ & \mathrm{t}_{1}=3-6 \text { (only for T2) } \\ & 12 \mathrm{~s} \text { (only for T4,T5,T6) } \\ & \text { Tolerance: } \pm 10 \% \text { up to } 6 \times \ln (\mathrm{T} 4, \mathrm{~T} 5, \mathrm{~T} 6) \\ & \pm 10 \% \text { up to } 2 \times \ln (\mathrm{T} 2) \\ & \pm 20 \% \text { above } 6 \times \ln (\mathrm{T} 4, \mathrm{~T} 5, \mathrm{~T} 6) \\ & \pm 20 \% \text { above } 2 \times \ln (\mathrm{T} 2) \end{aligned}$	-	$t=k / l^{2}$
S	Against short-circuit with inverse short time delay trip and trip characteristic with inverse time $\left({ }^{2} \mathrm{t}=\mathrm{k}\right)$ (selectable as an alternative to protection function I)	$\begin{aligned} & \mathrm{I}_{2}=1-1.5-2-2.5-3-3.5-4.5-5.5-6.5-7- \\ & 7.5-8-8.5-9-10 \times \ln { }^{(2)} \\ & \text { Tolerance } \pm 10 \%(\mathrm{~T}, \mathrm{~T} 5, \mathrm{~T} 6) \\ & \pm 10 \% \text { up to } 2 \times \ln (\mathrm{T} 2) \\ & \pm 20 \% \text { above } 2 \times \ln (\mathrm{T} 2) \end{aligned}$	$\begin{aligned} & \text { at } 8 \times \ln \\ & t_{2}=0.1-0.25 \mathrm{~s} \\ & \text { Tolerance: } \pm 10 \% \text { up to } 6 \times \ln (\mathrm{T} 4, \mathrm{~T} 5, \mathrm{~T} 6) \\ & \\ & \quad \pm 20 \% \text { above } 6 \times \ln (\mathrm{T} 4, \mathrm{~T} 5, \mathrm{~T} 6) \\ & \\ & \\ & \pm 20 \% \text { (T2) } \end{aligned}$	\square	$t=k / l^{2}$
	Against short-circuit with instantaneous trip (selectable as an alternative to protection function S)	$\begin{aligned} & I_{3}=1-1.5-2-2.5-3-3.5-4.5-5.5-6.5-7- \\ & 7.5-8-8.5-9-10 \times \mathrm{In}^{(2)} \\ & \text { Tolerance: } \pm 10 \%(\mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6) \\ & \pm 20 \%(\mathrm{~T} 2) \end{aligned}$	instantaneous	\square	$t=k$

${ }^{(1)}$ These tolerances hold in the following conditions:

- self-powered trip unit at full power (without start-up)
- two or three-phase power supply

In conditions other than those considered, the following tollerances hold:
(2) For T4 $\mathrm{In}=320 \mathrm{~A}$. T5 $\mathrm{In}=630 \mathrm{~A}$ and $\mathrm{T} 6 \mathrm{In}=1000 \mathrm{~A} \Rightarrow \mathrm{I} \max =9.5 \times \mathrm{In}$,

The setting at $10 \times \mathrm{In}$ corresponds to $9.5 \times \mathrm{In}$.

	Trip threshold	Trip time
S	$\pm 20 \%$	$\pm 20 \%$
\mathbf{I}	$\pm 20 \%$	$\leq 40 \mathrm{~ms}$

Circuit-breakers for power distribution

Electronic trip units

PR231/P

The PR231/P trip unit is the basic trip unit for Tmax T7. It provides protection functions against overload L and shortcircuit S/I (version PR231/P-LS/I): with this version, by moving the dedicated dip-switch, you can choose whether to have protection S or protection I. Alternatively the version with only the protection function against instantaneous short-circuit I is available (version PR231/P-I see also page 2/45 and following). Setting the trip parameters of the PR231/P trip unit is made directly on the front of the circuit-breaker by means of dip
switches, and there is only one for the phases and the neutral, so it is possible to set the protection threshold, at 50% or at 100% of the phase protection.
To guarantee protection of the installation by means of the PR231/P protection trip unit, it is necessary to select the rated network frequency $(50 / 60 \mathrm{~Hz})$, by means of the special dip-switch.
Interchangeability of PR231/P can be requested by means of the dedicated ordering code 1SDA063140R1.

Protection S
Against short-circuit with delayed trip

Protection functions and parameterisations

Protection function		Trip threshold	Trip curves ${ }^{(1)}$	Excludability	Relation $\mathrm{t}=\mathrm{f}(\mathrm{l})$
	Against overload with long inverse time delay trip and trip characteristic according to an inverse time curve ($12 \mathrm{t}=\mathrm{k}$) according to IEC 60947-2 Standard	$\mathrm{I}_{1}=0.40 \ldots 1 \times \mathrm{ln} \text { step }=0.04 \times \mathrm{ln}$ Trip between 1.1...1.3 $\times \mathrm{I}_{1}$	$\begin{aligned} & \text { at } 6 \times \mathrm{I}_{1} \text { at } 6 \times \mathrm{I}_{1} \\ & \mathrm{t}_{1}=3-12 \mathrm{~s} \\ & \text { Tolerance: } \pm 10 \% \end{aligned}$	-	$t=k / l^{2}$
S	Against short-circuit with long inverse time delay trip and trip characteristic with inverse time $\left(1^{2} t=k\right)$ (selectable as an alternative to protection function I)	$\begin{aligned} & 1_{2}=1-1.5-2-2.5-3-3.5-4.5-5.5-6.5- \\ & \quad 7-7.5-8-8.5-9-10 \times \ln \\ & \text { Tolerance: } \pm 10 \% \end{aligned}$	$\begin{aligned} & \text { at } 10 \times \ln \quad \text { at } 10 \times \mathrm{ln} \\ & \mathrm{t}_{2}=0.1-0.25 \mathrm{~s} \\ & \text { Tolerance: } \pm 10 \% \end{aligned}$	\square	$t=k / l^{2}$
	Against short-circuit with istantaneous trip (selectable as an alternative to protection function S)	$\begin{aligned} & 1_{3}=1-1.5-2-2.5-3-3.5-4.5-5.5-6.5- \\ & \quad 7-7.5-8-8.5-9-10 \times \ln \\ & \text { Tolerance: } \pm 10 \% \end{aligned}$	instantaneous	-	$t=k$

[^1]

[^0]: (1) In alternative to Rc (with external toroid)
 (1) In alternative to
 (7) For all versions.
 (7) For all versions.
 (") Available with PR330/V. Measurement module
 (4) According to IEC 60255-3.

[^1]: ${ }^{(1)}$ These tolerances hold in the following conditions:

 - self-powered trip unit at full power
 - two or three-phase power supply

 In conditions other than those considered, the following tollerances hold:

 | | Trip threshold | Trip time |
 | :--- | :--- | :--- |
 | \mathbf{S} | $\pm 10 \%$ | $\pm 20 \%$ |
 | \mathbf{I} | $\pm 15 \%$ | $\leq 60 \mathrm{~ms}$ |

